

Bioremediation techniques

Cedre Information Day 10th March 2015

Dr. Ronan Jézéquel Research Department

After the incident, main responses

Mechanical recovery

At Sea

Dispersion

In Situ Burning

Initial clean-up

On the Shoreline

Manual cleaning

Sand screening

and Bioremediation

Capacity of certain organisms to assimilate oil as a source of energy

- Bacteria
- Fungi
- Yeast

2 forms of degradation:

- oxic
- anoxic

2 forms of degradation:

- oxic
- anoxic

In the best case scenario CO2 + H2O

Type of contamination

According to the chemical composition, the biodegradability of the oil will vary:

Resins 10 - 30%

Type of contamination

According to the chemical composition, the biodegradability of the oil will vary:

Type of oil	Biodegradability (%)
Petrol	> 90%
Kerosene	> 80%
Diesel	60 – 80%
Lubricants	< 50%
Crude oil (variable)	30 – 70%
Heavy fuel oil	10 - 20%
Bitumen	negligible

Type of contamination

Physical state of oil influences its bioavailibility

- dispersed or concentrated
- emulsified
- film, slick, ...

Oil concentration

Bioremediation should be implemented following initial clean-up of the site (polishing)

- Temperature, salinity, pH
- Water, oxygen concentration
- Bacterial flora autochotnous
- Abundance of nutrients (N, P, K)

Bioremediation

- Is considered as a "green" techniques compared to others
- Can be limited due to oil nature / concentration and environmental parameters (Temperature, Oxygen, Nutrients) => these parameters need to be assessed systematically before bioremediation deployment
- Implies that commercial products are used to increase oil biodegradation

Different bioremediation methods

- Biostimulation involves boosting the activity of indigenous microflora in a given environment by compensating for a lack of a fundamental element in the oil biodegradation process. This is implemented by providing nutrients and/or terminal electron acceptors (oxygen, nitrate, sulphate).

3 types of solutions:

- Water-soluble mineral fertilisers for agricultural or horticultural use composed of nitrogen and phosphorous
- Slow-release fertilisers in solid form: N and P combined with a solid carbonated element
- Liquid oleophilic formulations developed to provide nutrients close to bacterial activity (i.e. at the water-oil interface).

Different bioremediation methods

- Biostimulation involves boosting the activity of indigenous microflora in a given environment by compensating for a lack of a fundamental element in the oil biodegradation process. This is implemented by providing nutrients and/or terminal electron acceptors (oxygen, nitrate, sulphate).

- Bioaugmentation involves adding exogeneous micro-organisms in an environment characterised by the absence or low abundance of hydrocarbonoclastic bacteria. The micro-organisms are generally applied by spraying a rehydrated freeze-dried culture.

Cedre's activities in this field

- 1990 2000: many laboratory and in situ experimental studies to test and improve techniques.
- 2006 2015: 2 ANR projects on natural biodegradation in mudflats
 (DHYVA / DECAPAGE) and adaptation of communities to oil pollution

Oil degradation in coastal muddy areas and anoxic ecosystems

In <u>DE</u>pth characterization of HC-degradation <u>CAPA</u>cities of marine sediment microbial communities: adaptation, metabolic processes and influence of oxy<u>GE</u>nation regimes

Nov. 2011 - Nov. 2015 1500 k€

- University of Toulouse
- University of Pau (2 laboratories)
- University of Marseille
- Cedre

Main Objectives of the project:

- Understanding how microbial communities respond, adapt and degrade petroleum compounds in anoxic area
- How bacterial metabolisms interact in the degradation of oil?
- Estimating the bioturbation effects on these bacterial activities.
- Assessing the influence of dispersant on the oil distribution in sediment, on microbial and macrofauna communities

Mesoscale Experimentation (Jan. - Nov. 2012) Microcosms of a mud type ecosystem

Seawater supply

16 microcosms (30L of mud each) equipped of :

- geotextile membrane
- ball cock
- evacuation pipes of tides water

Lifting table with collector of tides water

- negative control (only sediments)
- sediments with oil pollution
- sediments with Hediste diversicolor (bioturbation)
- sediments with oil pollution + bioturbation
- sediment with dispersed oil with or without Hediste.

10 sampling rounds of sediment cores (10 x 3 cm) were dispatched to the different laboratories during the 10 months of experiment.

ICP-MS analysis of metals in petroleum

Metal - complex type in petroleum:

ETIO porphyrin

Bioturbation analysis

Examples of oxygen distribution in sediments.

Bacterial diversity (DNA and RNA)

A T-RFLP profile of extracted DNA from mud polluted (black) or not (red)

Mechanisms of adaptation and genes involved

Schematic representation of an integron and location of the fragment containing the "first gene cassette" targeted

Hydrocarbons titration

Cedre's activities in this field

- 1990 2000: many laboratory and in situ experimental studies to test and improve techniques.
- 2004 2015: 2 ANR projects on natural biodegradation in mudflats (DHYVA / DECAPAGE) and adaptation of communities to oil pollution
- 2012: review of bioremediation techniques
- 2014 2015: development of an efficiency test for bioremediation agents

Development of an efficiency test for bioremediation agents

Objective: to develop an experimental system with tidal cycle simulation (dilution phenomenon) in a contaminated environment treated with a bioremediation agent.

12 tanks

(L = 40cm; I = 20 cm; h = 30 cm)

Oscillating table (L = 4,80m; I = 20 cm)

Development of an efficiency test for bioremediation agents

Objective: to develop an experimental system with tidal cycle simulation (dilution phenomenon) in a contaminated environment treated with a bioremediation agent.

- shaker table with 12 tanks
- seawater tank
- programmable lifting table whose upward and downward movements control the emptying (low tide) or filling (high tide) of the tanks

Development of an efficiency test for bioremediation agents

Action schedule:

- 2014: 1st series of trials on 2 biostimulants (inconclusive due to lack of bacteria)

- 2015: 2nd series (April)

Thank you for your attention

